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CHAPTER 1

INTRODUCTION

?

The discovery in the late 50’s of coherent eddy structures in the viscous
wall region of a bounded turbulent shear flow, using visualization techniques,
opened up ‘new horizons for both the theoretical and the experimental worker in
the field. Dye-as well as hydrogen bubble techniques (Beatty et al (Corrsin 1956),
Kline et al 1967) revealed the existence of a streaky structure in the viscous sub-
layer region. These streaks were found to alternate in the spanwise direction and
to be characterized by a low streamwise velocity’ﬂuid, whereas the regions
between successive streaks Were observed to carry an excess of streamwise
momentum. As these streaks migrate downstream, at the same time, they lift
away from the wall and when they reach a critical distance they start to oscillate
and break-up into chaotic motions. The most important finding is that during
the eruption of the low momentum fluid away from the wall a great deal of tur-
bulent kinetic energy is produced. Due to the violence of the eruption these
streaks were given the name ‘‘turbulent bursts’. It was also found that, if the
spanwise spacing between the wall streaks and the frequency of occurrence of the
turbulent bursts are made dimensionless with wall parameters (friction velocity
u, and viscosity ), they remain constant over a wide range of Reynolds numbers

(Kim et al 1971).



The impact of this discovery was twofold:
1) It was realized that there is a need for reliable measurements close to the wall
2) There was a need to dévelop statistical analysis methods that would be able
to retain the “phase information” in a turbulent signal. It was realized that the
‘conventional long term averaging techniques ‘‘smear out” all the characteristic
features of turbulence. It was this realization that led to the development of

‘““conditional averaging'’ techniques.

A number of research groups have been involved in investigating the
coherent structures in the viscous wall region. A review of their work, the
differences in their experimental methodologies and their results will be presented
in the next chapter. A detailed summary of the work on turbulent boundary

layer research has also been given by Laufer (1972) and Willmarth (1975).

Many attempts have been made to describe analytically the structure in tile
viscous wall region. Taylor (1936) solved the truncated linearized momentum
equation and related the velocity field to the pressure field. Linearized analyses
have also been conducted by Sternberg (1962), Schubert and Corcos (1967),
Gurkham and Kader (1970) and by Hatziavramidis (1978). These analyses don’t
take into account the Reynolds stress terms and thus fail to characterize the

energy containing motions in the viscous sublayer region.

Bakewell and Lumley (1967) suggested that the wall streaks result from
counterrotating pairs of eddies homogeneous in the flow direction. Sirkar and

Hanratty (1970a) also suggested that the flow in the wall region is dominated by



a secondary pattern homogeneous in the flow direction that is of the type shown
in Figure 1a. According to the model, the streaks observed when dye is injected
from a wall slot result from the sweeping action of the secondary flow in the

transverse direction close to the wall.

Fortuna and Hanratty (Fortuna 1971 Hanratty et al 1977) assumed that,
on average, the streamlines in the secondary flow have the shape shown in Flgure
1a, and used a pseudosteady state assumption to calculate the streamwise velo-
city component. They pictured the secondary flow to bring high momentum fluid
to the wall at A, to exchange momentum with the wall as it moved fluid in the
transverse direction from A and B and to remove low morhentum fluid from the
wall .at B. According to this picture, the streamwise, s,, and the spanwise, s,,
components of the velocity gradient at the wall should have the phase relation

shown in Figures 1b and lc.

Hatziavramidis and Hanratty (1979) undertook a computational study to
explore how the viscous wall region would respond to transverse velocity fluctua-
tions at its outer boundary, y,¥ ~30-40. The basic model was similar to the one
used by Fortuna (1971) but it was -recog'nized that his pseudosteady state
assumption overlooks important aspects of the flow. The flow field in the viscous
wall region was pictured to be coherent and to be associated with flow deviations
in a well mixed outer region. The transverse flow at y,t ~30-40 was taken as
w=wysin 27z/X\ cos 2xt /Ty, where X is the spacing of the dye streaks, Tp, the

period between bursts and w;, a constant. Good agreement was obtained
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Figure 1 Idealized coherent eddy structure.



between the calculated flow field and experimental results, especially for y* <15.

The initial motivation for the model in Figure 1a was provided by measure-
ments of s, 4nd s, obtained by Sirkar and Hanratty (1970b) by studying the
mass transfer rates to a pair of rectangular electrodes mounted in a chevron
atrangement flush with the wall. The results of these experiments showed that

the transverse flow at the wall is quite large, s, being about 0.1S;.

Lee, Eckelmann and Hanratty (1974) used an array of electrode pairs to
measure 8, and s, simultaneously at a number of locations on the wall. Their
experiments support the existence of a secondary flow pattern of the type visual-
ized by Sirkar and Hanratty (19704) and the proposal of Fortuna {1971) regard-
ing the influence of this secondary flow on the streamwise velocity fluctuations.
In particular, it was found that the s, variation in the spanwise direction can, on
average, be adequately described by a sinusoidal variation of the type shown in
Figure 1b. It was also shown that the s, pattern is accompanied by a spatial
variation .of s, that is out of phase by A\/4. Their measurements of \ are in good

agreement with results of the visual studies, cited above.

These results of Lee et al established the patterns of s, and s, at the wall
which are associated with the wall eddies, but left unanswered the question of
how well, lf at all, events at the wall are related to phenomena occurring at dis-
tances away from the wall. For this purpose, conditionally averaged velocity
measurements are needed which reflect in a direct way the relation of the velocity

field to changes in the eddy structure and which give information on how the



eddy structure and velocity field evolve in time. One way of doing this would be
to combine instrumental measurements of the velocity field with dye pattern
measurements. A different approach has been taken in two recent experiments

performed by Hogenes (1979,1982) and by Lau (1980).

Measurements of s, at a number of z-locations are compared with the pat-
tern shown in Figure 1b to determine whether a strong eddy exists. Probes which
are mass transfer analogues of the hot film anemometer are located over the
center of this array, defined as =0, in order to measure properties of the velo-
city field. Four aspects of strong wall eddies are defined. Negative or positive
values of ds,/dz at z=0 indicate respectively that a strong outflow or inflow
would be sampled by the fluid probes. Maxima or minima in s,(z) at a fixed
time indicate strong positive or negative spanwise flows and, on average, a cou-
pled inflow and outflow at distances of Az*~225 from the center of the wall

probe array.

Hogenes and Hanratty (1982) examined the influence of these eddies,
defined in terms of the s,(z) pattern, on the axial velocity component by study-
ing how the s,(z) pattern and the streamwise velocity profile at 2=0 are associ-
ated with changes in the eddy pattern. They were able to show that the A\* /100
eddies are controlling the fluctuations of the streamwise velocity component in

the viscous wall region.

Similar investigations have also been carried out by Blackwelder and Eckel-

mann (1978, 1979) and Kreplin and Eckelmann (1979a). Blackwelder and



Eckelmann (1978, 1979) studied the spanwise structure of the bursting
phenomenon. They located a fluid probe, sensitive to streamwise velocity
fluctuations, at y*=15 in order to detect bursts and cbnditionally averaged
measurements of s, and s, at one wall location as well as measurements of ¥ and
w at a fixed distance from the wall. Their detection scheme was a Variable
Interval Time Averaging (V.I.T.A.) scheme that had been used by Kaplan and
Laufer (1969) to study the intermittently turbulent region of a boundary layer.
They concluded that the ‘‘bursting’’ phenomenon is associated with pairs of
counterrotating vortices that seem to “pump’” fluid away from the wall, thus
forming a low speed streak. They also found that the streamwise momentum
defect region is long and narrow, and that the velocity defect is terminated by a

strong acceleration followed by a high speed region.

kreplin and Eckelmann (1979a) investigated the propagation of perturba-
tions in the wall region of a turbulent shear flow. They used a movable V-probe
to measure the streamwise and spanwise components of the velocity at a certain
distance from the wall. They also used a V-probe mounted on a wall plug at a
wall distance of y*=2.3 in order to measure the same components close to the
wall. The movable V-probe was located at z* =0 and y* =S5, 10, 20, 40 and the
wall plug was positioned at z+=-108, 0 and + 144. From the correlation meas-
urements, Kreplin and Eckelmann deduced that the wall region is dominated by
pairs of inclined, counterrotating streamwise vortices. The average spanwise

separation of their centers is about z+=250 and the length of the vortices was



estimated to be zt~21200. As these vortices are convected downstream the
angle of their plane of rotation was pictured to decrease and the average

minimum distance of the vortex centre from the wall was estimated to be

The present work has two goals. One is to develop an effective conditional
averaging scheme capable of detecting the wall eddy patterns. Using this scheme,
then, the relation of the wall patterns to transverse velocity fluctuations is stu-
died by determining the relation of the transverse velocity at different values of
z, y and z to changes in the eddy structure. For this purpose the experimental
measurements of Lau (1980) are used. In these experiments the longitudinal and
spanwise components of the fluctuating velocity gradient at the wall of a pipe (s,
and s,) and the fluctuating velocity at various distances from the wall (4 and w)

were simultaneously measured.

The second goal of this work is to explore a nonlinear model of the flow
oriented eddies. Similar models have been explored by Chapman and Kuhn
(1981) and by Hatziavramidis and Hanratty (1979). The difference between this
work and the previous works is in the kind of the boundary conditions that are
used at the edge of the viscous wall region. The secondary flow at y,t =30-50 is
assumed to be characterized by two harmonics in the spanwise direction. The
effect of these two spatial wavelengths on the properties of the time varying velo-
city field is investigated. The case in which one of the two harmonics of the

spanwise velocity is of infinite wavelength is also analyzed.



The temporal variation of the secondary flow at the edge of the viscous wall
region is characterized by single harmonics which are different for each
wavelength. The case where the signal at the upper boundary contains a wide

range of frequencies is also studied.

An attempt is also made to assess the effect of introducing a random phase

to the signals at the outer boundary, which causes a shifting of the wall patterns.

Finally the effect of various boundary conditions at y=y, on the calculated

dynamics is also explored.

An important contribution of this work is the development of a conditional
averaging scheme that is able to capture the wall structures as they evolve in
space and time. The application of this scheme to measurements of the spanwise
velocity close to the wall and in the fluid revealed that the A* ~100 wall eddies
are associated with a very characteristic behavior of the spanwise velocity at
yt ==40; that is, a flow r,eversal, with the return flow having the same magnitude

as the flow that preceded it in time.

The most remarkable result of the computations in this work is that the use
of a fixed cell model with two spatial harmonics can describe the important
features of turbulence in the viscous wall region. It is shown that small
wavelengths can account for the transfer of momentum to and from the wall and
for the production of Reynolds stresses throughout the wall layer. In order to
describe the intensity of the spanwise flows longer wavelengths become necessary,

especially at the outer part of the wall region. As the distance from the wall
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decreases, smaller wavelengths become more important and completely define the

dynamics of turbulence in this region.

An important finding of this work is the process by which smaller
wavelengths are generated by the wall. The mechanism for the generation of
smaller scales appears to be the separation of the flow in the spanwise direction.
This convective type motion creates small eddies by the non-linear interaction of

larger scales.

Another striking discovery is a frequency filtering process according to
which only low frequency velocity fluctuations in the plane perpendicular to the
flow direction are effective in producing streamwise turbulence. Evidence for this
selection process comes from an examination of the trajectories of inertia-free

fluid particles within the wall region.



CHAPTER 2

LITERATURE SURVEY

In recent years there has been a growing interest in studying the coherent
structures that are found in shear flow turbulence. Flow-visualization experi-
ments have shown that many examples of boundary shear flows, including mixing
layers or wakes, boundary layers and jets, have a col;erent recurring structure.
Statistical measuring techniques, however, only provide quantitative information
on their time-averaged properties, so that much of the detail of such structures is
lost. This is partly due to the fact that the repeating velocity patterns, when
viewed at fixed points, are never sufficiently periodic to be ;learly recognizable.
It is also difficult to interpret information obtained at one or two fixed points as
part of a somewhat complex moving structure. A much clearer picture is
obtained if a series of transducers is used that can provide simultaneously spatial

and temporal information about the structures.

Conditional averaging techniques have proved to be very powerful tools in
providing more ordered information within which clearly defined patterns emerge.
They normally depend on some automatfc logical process for deciding which parts
Of, the signal arise from the flow structurés of immediate interest. Results
o}.)tained by following such procedures must naturally enough i)e accepted with
caution unless the logical conditioning process is related to some clearly

identifiable repetitive physical characteristic of the flow pattern.

11
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An attempt to numerically calculate a turbulent flow field by solving the
full 3-D time dependent Navier-Stokes equations is a very difficult task. The
mesh-size of a three dimensional finite-difference grid that would be required to
resolve the smallest turbulent eddies is so small that the computation is practi-
cally not feasible even on the largest supercomputers available today. It can be
shown that for a pipe Reynolds number of 10° the numbet of grid points required
to resolve the Kolmogorov microscale, which is the smallest eddy in a turbulent

flow, is approximately 10°.

The ways that the problem has been attacked so far are the following:

1) Reynolds averaging: This is the classical approach by O. Reynolds according
to which the Navier- Stokes equations are av‘eraged in time and one then is faced
with the task of modelling the resulting Reynolds stresses. |

2) Large-eddy simulations; These are time-dependent computations of the three-
dimensional large eddy structure of turbulence. Due to the limitations on, the
mesh size the Navier-Stokes equations are spatially averaged and the small
(subgrid) scale eddies have to be appropriatelly modelled.

3) Simple eddy modelling of the viscous wall region: According to this approach
the time dependent Navier-Stokes equations are solved on a plane perpendicular
‘to the flow direction that extends throughout the viscous wall region. The tur-
bulent velocity boundary conditions have to be modelled ét the outer boundary
of the wall layer, then the time-dependent dynamics are computed and finally the

results are time averaged. Thus (time) averaging is the last operation performed
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on computed dynamics rather than the first operation performed on the dynamic

equations as in the previous two approaches.

In section I of this chapter a review is presented of the available turbulence
measurements in the viscous wall region and of the work on coherent eddy struc-
tures. An account is also given of the different conditional averaging techniques
that were used in connection with these studies. Section II compiles the various
computational methods for turbulent flows with an emphasis on the use of large

computers for the time-dependent solution of the Navier-Stokes equations.

I. Turbulence measurements and coherent structures

A. Measurements of turbulence properties in the viscous wall region

The average statistical properties of the turbulent quantities in the viscous
wall region have been measured quite extensively in many laboratories. These
present themeselves in the form of average velocities, intensities and higher-order
moments of velocity fluctuations, Reynolds stresses, correlations and spectral

measurements.
1. Mean velocity measurements

The average streamwise velocity profile has been measured in various kinds
of turbulent shear flows (boundary layer, pipe, channel). Laufer (1954) made
measurements of the mean velocity U in a pipe. Ueda and Hinze (1975) carried
out the same measurements in a plane boundary layer flow and Hussain and Rey-

nolds (1975) in a fully developed turbulent channel flow.
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All these measurements could well be represented by the relations:

Ut =y* for y+<7

and

Ut =2.44Iny* +49 for y*>30

where the superscript + denotes quantities normalized with wall parameters
(friction velocity u,, viscosity v).
In the buffer region 7<y* <30 Van Driest’s (1956) mixing length relation

is widely used. Spalding (1971) has given a table of empirical formulas that fit

the experimental data on the mean velocity in various regions of the flow.

2. Intensities of velocity fluctuations

The intensities of the fluctuating velocities are defined in terms of the root-
mean-square (rms) of the ﬂuctuating quantities:
o =(4%)2,
v =()"?,
w'=(w?)/2.
The intensities of the two non-zero components of the velocity gradient at

the wall are similarly defined as:

e \211/2
==l
By y=0
I \211/2
aw
8 —(8 )l/2 ay ' y-o

The intensities of the three components of the velocity have been measured

by Ueda and Hinze (1975), Hussain and Reynolds (1975), Schildnecht et al (1979),
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Kutateladze et al (1977), Clark (1968) and by Laufer both in a channel (1850)

and in a pipe (1954).

The commom finding among the various measurements is that within the
viscous wall region u >w'>v'. The streamwise intensity (u')* reaches a max-
imum at y*~213-15 and the normal and spanwise intensities start leveling off for

y*t >25.

Extensive measurements of s, and s, have been carried out in this labora-
tory (Eckelman 1971, Lee 1975, Hogenes 1979) and by other investigators (Py
1973, Eckelmann 1974, Kreplin 1973). The measurements with the electrochemi-
cal method show that s, /5,~0.3 and 8, /5,~0.1 so that 8, /s, =ca3. Measure-
ments with hot-films give lower values for the streamwise intensity
(s,’ /5,=0.205-0.25 and the value of s,' /3. has been reported by Kreplin and

Eckelmann (1979b) to be 3.8.
3. Probability distributions and higher order moments

The probability density distributions have been measured by Klebanoff
(1954), Zaric (1972), Eckelmann (1974), Ueda and Hinze (1975), Ueda and
Mitzushina (1877), Elena et al (1979), and Kreplin and Eckelmann (1979b). The
basic conclusion from these measurements is that the velocity fluctuations in the
viscous wall region are non-Gaussian. The skewness of the streamwise velocity
fluctuations is positive close to the wall, has a zero crossing at y*=13-15 and
then becomes negative. Positive skewness means that the most pobable velocity

is less than the mean which then implies that close to the wall the streamwise



16

velocity fluctuations will more often be negative than positive. At y* larger
than 13-15, the opposite is true. The flatness of u-fluctuations has a minimum
around the same yt where the skewness has a zero-crossing. A Gaussian-sighal
has a flatness of 3 and for larger values of the flatness the skirt of the probability
density curve extends farther away from the average. The flatness is also a
measure of the intermittency of the signal which then implies that the u-
fluctuations are more intermittent close to the wall (y* <5) and far away from

the wall (y* >30) than in the region 5<y* <30.

The skewness of v is positive close to the wall (Kreplin and Eckelmann
1979b) and becomes zero for y* >15. The flatness of v fluctuations shows a
maximum where the flatness of ¥ has a minimum (Ueda and Mitzushina 1977,
Kreplin and Eckelmann 1979b). The skewness of the spanwise velocity fluctua-
tions is zero throughout the viscous wall region and the flatness reaches a

minimum of 3 around y* =25 (Kreplin and Eckelmann 1979b).

The probability density distribution of the angles a,8 between w,v and the
flow direction has been measured by Kreplin and Eckelmann (1979¢). They find
that the most prc;bable flow direction is toward the wall. They report
0 30° (@i =—30°) at y*=3.6 and f,,,,~16° at y*=3.4 (away from the

wall) 8,;,~~-10° at y* =245 (towards the wall).

4. Reynolds stress

Measurements of the Reynolds stress —#7 have been carried out by Laufer

(1954), Gupta and Kaplan (1972), Eckelmann (1974), Kutateladze et al (1977)
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and by Schildnecht et al (1979).

The intermittency of the uv signal was confirmed by Gupta (1870) and
Eckelmann (1974). The average —#7 was found to be rather small éompared to

the peaks in the uv signal in the sublayer (peak /mean ~230:1).

Willmarth and Lu (1972) and Wallace et al (1972) sorted the contributions
to the uv product into the four quadrants of the uv-plane. The main contribu-
tions to the Reynolds stress -7 were from regions with %<0, v>0, and
>0, v<0 associated with ejections of low-speed fluid from the wall and
inrushes of high-speed fluid from the outer flow. On the average ejections contri-
bute 70% to the Reynolds stress, inrushes contribute another 70% and the rest

-40% is taken up by motions that give a positive uv product (interactions).

Higher-order moments of the fluctuating uv product have been measured by
Gupta and Kaplan (1972) and Antonia and Atkinson (1973). The skewness of uv
is found to be negative throughout the viscous wall region and the flatness
attains values up to 30-40 close to the wall. Wallace and Brodkey (1977) meas-
ured the joint probability density distribution p(u,v) on the u—v plane of a tur-
bulent channel flow. They found that the largest contribution to @¥ is not pro-

duced by the most probable pair of velocities (u,v).
5. Correlation Measurements

The velocity correlation temsor for a stationary random process is defined
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ui(-z-rt)uj(z'*' Lvt+ T)

4 (2)u; (z+ 1)

w(ZL,7)=

If periodicity is also assumed in the streamwise (z) and spanwise (z) directions

then the correlation becomes

ui(x) ¥, 2, t)uj(x + sz y+ Ay; z + AZ, T)
u (¥)u;(y + Ay)

R, (y; Az, Ay, Az, 7)=
where (u,, 4y, u3)=(u,v,w).

The correlations of the fluctuating velocities in bounded turbulent shear
flows have been measured by various turbulence researchers. Based on their
measurements these investigators attempted to infer evidence about the existence
of structure in the flow field. In what follows the correlation measurements are
presented and the discussion of the conclusions reached by the investigators is
postponed for part B of this section where the work on coherent eddy structures

is discussed.

Grant (1958) was the first to obtain the nine correlations for a cylinder
wake and for a turbulent boundary layer. His measurements of
Ry (yir),R,,(y;z) and R,,(y;r) at zero time delay in the inner part of the boun-
dary layer are useful in supplying scaling information about the wall structures.
They show that R, (y};Az*,0,0) has a much longer tail than
R,(y}; Az*,0,0) and R,,(y,'; Az*,0,0) where y,"~25-50. The correla-
tions with a spanwise separation are also interesting in that they show that posi-
tive Ry, (y,"; 0, 0, Azt) correlations occur for larger values of Az* compared to

R, (y};0,0 Az*) and R,,(y};0,0, Az*), where now y,F~35. The latter
uy o o o



19

two correlations drop to zero around Azt ~260-90 and stay zero for longer Azt's

even though there is a hint for negative R, (y,; 0, 0, Az*) above Az*~90.

Favre, Caviglio and Dumas (1957, 1958) have made extensive measurements
of space-time correlations. Although these measurements are very detailed in
their coverage of different separations in space and time, they are, on the other

hand, restricted by being entirely of the type R,,(y;Az, Ay, Az, 7).

Comte-Bellot (1961) carried out correlation measurements in a channel flow.
The most interesting feature of her results are the negative values of
R,.(¥;0,0, Az) and R,,(y; 0, 0, Az), for sufficiently large Az’s, at the lowést y

station where y/D=0.11 (D being the half-width of the channel) or y* =550.

- Tritton (1967) extended the work of Grant (1958). He measured various
auto- and cross-correlations with an emphasis on R,,(y; Az, Ay, Az, 0). His
R, (y};0,0, Azt) measurements with y,t =40 give zero crossing at Az* =20
and negative values extending out to Azt =180 with a peak at Az*~45. The
same behavior was measured at y,t =174 and 414 with the zero crossing moving
to larger Az*’s. These results were in agreement with Comte-Bellot's (1961) but
contradict Grant’s (1958) measurements for an unknown reason. Tritton's meas-
urements of R, (y; 0,0, Az) and R,,(y;0,0, Az) are very interesting as a
source of structural information for the coherent structures. His measurements of
R, (y¥;0,0,Az*) for yt =10, 20 and 93 show zero crossings at Azt =8, 38
and 85 with negative peaks at Az*~35, 70 and i?5 respectively and negative

tails extending up to Az*=2400 for the largest of the above y,t’s. Tritton’s
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measurements of R,,(y,;;0, Ayt, Az*) show maxima at Azt =52 for y,' =19
and 32 and Ayt =4 and -9 respectively (positive Ayt is in the direction away
from the wall) and positive values extending up to Az*~360. The same
behavior for R,,(19; Azt, 4, Azt) was measured with a longitudinal separation

Azt ~237.

Lee et al (1974) measured simultaneously the two components of the velo-
city gradient at the wall S, and s, and obtained correlations of the form
R,.(Az), R, ,(Az) and R, ,(Az,7). Their results show that the s, pattern is
accompanied by a spatial variation of s, which is out of phase by A\/4. The
development of the s, pattern was found to lag behind the development of the s,
pattern, indicating that the streamwise flow at the wall is largely controlled by

the spanwise velocity field.

Kreplin and Eckelmann (1979a) studied the propagation of perturbations in
the viscous wall region and calculated correlations of the form
R,, (Ay,7) R, (Ay,7). They interpreted their measurements as being associated
with vortical flow structures, inclined to the wall, that travel downstream. The
spanwise distance between these structures was found to be Azt ~¢50 and they
could be observed over a streamwise distance of Azt >1000. They also attri-

buted the antisymmetry of the R, (-40,7) correlation to the fact that the vortex

centre moves below y* =40 as it is convected downstream.
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6. Spectral measurements

The energy spectrum tensor for a stationary random process that is homo-
geneous in the z and z directions is given as the Fourier transform of the

corresponding correlation tensor:

Q"-“J(y’ = w ( )3 III u,u,(yr I e’ k‘rhdf)deT

where k=(k,, k,).r=(z, z) and dr=dzdz.

The frequency spectra of the streamwise fluctuating velocity within the
viscous sublayer have been measured by Bakewell and Lumley (1967). The data,
nondimensionalized by y?w, define a single curve when plotted against

nt

=nvful.
The spectra of the fluctuating gradients at the wall, s, and s,, have been
measured by Sirkar (1969) and Fortuna (1971) using electrochemical techniques.

The median frequency of the wall spectra is n* ~0.01 and most of the turbulent

energy is contained in frequencies lower than that.

Morrison and Kronauer (1969) measured two-dimensional frequency
wavenumber spectra &, (y*; k¥, wt) and &,,(y*; kF, wt) with y* covering
the whole viscous wall region 0< y* <40-50. Their measurements, being limited
on the streamwise velocity, are nevertheless useful in obtaining information about
the relation between eddy size and lifetime in the wall region. As the distance
y* from the wall increases, the ridge line of the ®,,(y*; k', wt) spectra exhi-
bits a rotation from a vertical position to one forming an angle with the k% axis.

At the same time the peak of ®,, shifts to smaller wavenumbers but the



corresponding circular frequency remains around w* =20.06-0.08.

Morrison et al (1971) presented more extended measurements of
&, (y*; wt, k}) and @,,(y*; wt, kY) in the viscous sublayer. They found
that the characteristic convection velocity is independent of the wavenumber and
is the same at all positions in the layer (¢," =8.0). They concluded that sublayer
turbulence is wave-like. The characteristic dimensions of the sublayer waves

were found to be A} /2630 and )} ~135.

A summary of pressure spectral measurements at the wall is given by
Willmarth (1975). These measurements are made with flush transducers or with
pinhole microphones. Emmerling (1973) showed, for the first time, that the
small-scale wall pressure fluctuations do scale with wall parameters. Buil (1967)
plotted the variation of intensity of wall pressure fluctuations with Reynolds
number. It was shown that the larger-scale wall pressure fluctuations scale on
outer variables and increase in intensity with Reynolds number.

B. Coherent structures in wall turbulence
1. Visual and instrumental studies

The importance of coherent structures in understanding the mechanism
that sustains turbulence has been emphasized in Colloquii and Workshops around
the world. An account of the Colloquium on Coherent Structures on Turbulence
held at Southhampton from 26-29 March 1974 has been given by Davies and Yule
(1975). Summaries of the First and Second Research Specialists Workshops on

Coherent Structures in Turbulent Boundary Layers have also been presented by
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Kline (1978) and Kline and Falco (1979) respectively.

In these meetings the emphasis was placed on the following topics:
a) Presentation of experimental results
b) Reconciliation of the findings of the various laboratories

¢) Posing of questions about the turbulent boundary layer structures.

In what follows a brief account of the work on coherent structures is
presented. The first attempts in deducing information about the existence of
eddy structures was based on correlation measurements as mentioned in part A
of this section. The later development and use of conditional sampling and
averaging techniques provided a more reliable method to extract structure out of

a turbulent signal.

Townsend in a series of papers (1957, 1961, 1970) and in his book (1956)
presented some novel ideas about the structure of turbulence. He suggested that
a turbulent flow field has a double structure: a small scale or “active” motion
which transfers momentum and produces Reynolds stress and a large scale or
“inactive” motion which interacts with the active component at points farther
from the wall where it can also contribute to Reynolds stress. The important
point to emphasize here is that Townsend, for the first time, recognized the
existence and importance of certain coherent structures having a characteristic
length and time scale and formulated the problem in terms of these. Using the
rapid distortion theory of Batchelor and Proudman (1954), Townsend (1970) cal-

culated the nine correlations for a turbulent cylinder wake and compared them
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with Grant’s (1958) measurements. He concluded that the dominant structure is
a double-roller eddy which can also be described as a section of a linear jet or as
a diffused vortex-pair. He noted that this structure resembles closely the eddies

studied in boundary-layer and pipe flow by Kline et al (1967).

Grant (1958) preferred to interpret his correlation measurements by postu-
lating that there are stress releasing motions in the inner part of the boundary
layer. He associated these with a series of jets lined up in the direction of the
stream. Because of the short extent of R,,(y,}t; 0,0, Azt) he concluded that
these motions are narrow in the z-direction and that the back-flow appears to be
in the =z-direction. He reconciled this notion with the negative values of
Ryu(y,; 0,0, Az*) by arguing that they are related to flows toward both sides

of the displaced fluid.

Tritton (1967) did not succeed in formulating a simple model of the large
eddies. He concluded though that his results do give further support to
Townsend’s hypothesis that the large eddies have a characteristic structure of
their own. He also suggested that the description of the large eddies in the wall

region as a coherent eruption from the viscous sublayer is unsatisfactory.

Bakewell and Lumley (1967) carried out an orthogonal decomposition of the
correlation function of the streamwise velocity component with normal separation
R,.(y;0, Ay, 0) and postuléted the existence of counterrotating eddies of
streamwise extent that give rise to eruptions from the viscous sublayer which are

coupled with more diffuse return flows.
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Visualization techniques were extensively used by both the Stanford (Kline
et al 1967, Kim et al 1971, Offen and Kline 1974) and the Ohio state group

(Corino and Brodkey 1969, Nychas et al 1973, Praturi and Brodkey 1978). The

results of these studies provided much information about the wall structures.

The Stanford group used dye injection through wall slots (Kline and Rup-
stadler 1959, Runstadler et al 1963) or through a flattened Pitot tube placed in
the outer flow (Offen aﬁd Kline 1974). Subsequent studies usec the hydrogen
bubble technique (Kline et al 1967, Kim et al 1971), since this method provides
both qualitative and quantitative information. In this technique a single plati-
num wire is used as an electrode to generate small hydrogen bubbles. By pulsing
the voltage applied to the wire, time lines can be generated, and, by insulating
spanwise portions of the wire, streaks are formed. The experimental efforts of
the Stanford group revealed a surprisingly organized structure close to the wall.
It was found that the dye injected through the wall slots undergoes an
indentifiable sequence of events: formation of a low-speed streak, lift-up of the
low-speed streak, oscillatory growth and final breakup. This eruption of low
axial momentum fluid away from the wall has been given the name “turbulent
burst”’. The ejection of low-speed (u) fluid from the wall requires, from con-
tinuity, a return flow in the opposite direction. Such a wallward convective
motion, called sweep or inrush was observed in almost every case just before the
beginning of the oscillatory motion of the lifted wall streak. Two types of vorti-

cal motions were associated with a sweep. One is a transverse vortex that brings



fluid down toward the wall and then moves it forward in the mean flow direction.

The other is an upward-tilted streawise vortex (Offen and Kline 1974).

The Ohio State group started an investigation of the wall flow structures
(Corino and Brodkey 1969) by suspending solid particles of colloidal size in a
liquid and photographing their motions with a high-speed motion picture camera
moving with the flow. The most important characteristic of the wall region
(0<y* <30) was found to be the intermittent ejection of discrete fluid elements
outward from the wall. The actual ejection of fluid was only part of a sequence
of events. The first of these events was a deceleration of the axial velocity of the
fluid within ‘a local region near the wall. Deficiencies as great as 50% of the local
mean velocity were observed. While the field was thus decélerated, the next step
occurred, which was an acceleration. This resulted from a mass of fluid coming
from upstream with approximately the local mean velocity, that entered the
retarded field, and then accelerated the fluid. This appeared to be a part of a
large-scale disturbance carried by the mean flow. At various times an effect,
called two-layer velocity, was observed. This was believed to be associated with
the spanwise variation reported by Kline et al (1967) but of far smaller scale than
implied by that observed for the boundary layer flow. The third event is an ejec-
tion i.e. an abrupt movement outward from the wall area of fluid originally
within this region. At the time of ejection there is often a very\ sharp interface
between accelerated and retarded fluid, creating a very high shear layer. The

ejection phase ends with the entry from upstream of a stream of fluid directed
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primarily in the axial direction; this is the sweep event.

Nychas et al (1973) photographed the outer region of a turbulent boundary
layer along a flat plate. The single most important event observed was a large
scale transverse vortex, which was transported downstream with an average velo-

city slightly smaller than the local mean. The transverse vortex appeared to be

the result of a Helmholtz type of flow instability.

Praturi and Brodkey (1978) photographed the motions of small tracer parti-
cles in a turbulent boundary-layer flow using a stereoscopic medium-speed camera
system moving with the flow. This technique allowed the three-dimensional
aspects of the flow to be studied and in particular allowed axial vortex motions
in the wall region to be identified. Their results indicated that bulges in the edge
of the boundary layer are associated with transverse vortex motions. They sug-
gested that the outer region motions give rise to conditions necessary for the
dominant wall- region activity of ejections and axial vortex motions. These axial
vortical motions were intense and lasted for a time short compared with the life-
time of outer-region transverse vortex motions. The results suggested that the
wall-region vortex motions are a result of interaction between the incoming
higher-speed fluid from the outer region and the outflowing low-speed wall- region

fluid.

The interface separating the turbulent and non-turbulent regions of a fully

developed turbulent boundary layer was explored by Kovasznay et al (1970).

This was one of the first studies that utilized the concept of conditional sampling.



They used the following detector function:

for non-turbulent flow
I(t) = 1 for turbulent flow

Once I(t) is known various conditional averages can be obtained. For

example, the “‘turbulent zone average’’ of any fluctuating quantity is defined as

_ L4t Lot
Q = lim i [ Q(t) I(t)dt where =, lim — f I(t
ty—o00 ’7tl t, ,—ooo t,

The use of this conditional averaging technique allowed Kovasznay et al to
arrive to the following conclusions: 1) The non-turbulent flow moves slightly
faster than the turbulent fluid adjacent to the surface, 2). The “front” of an
interfacial bulge is steeper than the ‘‘back’. This was consistent with the
findings that the streamwise velocities at the ‘‘front’” are higher on the average
than those in the “back”, 3) Conditional zone averages of the normal com-
ponent of the velocity showed positive values in the turbulent and negative in the

non-turbulent region.

Gupta et al (1971) used the VITA (Variable Interval Time Averaging Tech-
nique) to analyze measurements of the fluctuating streamwise velocity at various
spanwise locations for y* <12. According to this technique averages of fluctuat-

ing quantities are taken over short periods of time as follows:

a

1 t,+ T,
Q(zl’ o» l T' .!

In general Q is a random function of ¢,. Using the above definition the

correlation R,,(0, 0, Az, t,; T,) was computed for various values of T, keeping
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t, constant. For large T, the correlation function behaves similarly to the one
generated by the conventional long time averaging process. On the other hand
for small T,, large values of the correlation were observed for relatively large
separation distances, suggesting a structure with a characteristic spanwise

wavelength of A =2100.

Willmarth and Lu (1972) used conditionally sampled measurements of the
product uv in order to study the structure of the Reynolds stress near the wall.
They measured the fluctuating streamwise velocity u using a hot-wire at
yt=16.2 and the fluctuating uwv product using an X-wire at y*=30 located
directly above the point where ¥ was measured. The signal from the single hot-
wire provided the triggering information for the conditional sampling process.
When the value of u at y* =16.2 crossed a given threshold level T with negative
slope, the instantaneous uv product was recorded for a certain time interval
before and after the sampling criteria were met. The fluctuating uv product is
not the fluctuating stress caused by turbulence [which is UV-UV=uV+ vU+ uv]
but the term ultimately contributing to the average of fluctuating stress i.e. the
Reynolds stress (=&¥). So large values of the conditionally sampled wv product
would indicate large contributions to the Reynolds stress. Willmarth and Lu
found w2547 with T=-2.15u (where u is the r.ms. value of u) at

tU [6°=T.

Blackwelder and Kaplan (1976) studied the wall structure of a turbulent

boundary layer. They used two hot-wire rakes in order to study the variation of
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the streawise velocity in the spanwise direction and the direction normal to the
wall. They also used X-wires to measure the Reynolds stress. The detector
probe was a single hot-wire sensitive to streamwise velocity fluctuations and
located at yt=15. They used the VITA technique in order to obtain a localized
measure of the turbulent energy according to the relation:
var(z;, t, T)=u~2(x.-, t, T)-la(z, t, T

where the * denotes a VITA averaged quantity. The above quantity is a localized
variance and is a positive-definite quantity. The detection function was defined
as

1 if var> kug,
D(t) =

otherwise
where k is an appropriate threshold value. The conditional average of a quantity

Q was then defined by

< Q(=, r)>,+=—lﬁf; Q(z;, t;+ 7).
j=1
The quantities ¢; are the points in time where detection occured. These were
gelected to be midway between the beginning and the end of the period during
which D(t)5£0. Blackwelder and Kaplan found the detector function to be asso-
ciated with large streamwise velocity accelerations. The conditionally averaged
pormal velocity was directed outwards in regions of strong streamwise-
momentum deficit and inwards when the streamwise velocity exceeded its mean
value. The conditionally averaged Reynolds shear stress was approximately an

order of magnitude greater than its conventionally averaged value and decayed
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slowly downstream.

Wallace et al (1977) used a pattern-recognition technique to detect a gra-
dual deceleration from a local maximum followed by a strong acceleration in the
u-signal. Their technique worked as follows: a short-time temporal average

(referred to as TPAV) was taken to be the period from one maximum in du/dt

M
to the next. TPAV was thus defined as TPAV =—-1——n—1- Y, u(n) where m and

n=m
M are the .ﬁrst and last points in the pattern respectively. This value was sub-
tracted from the u signal to obtain the fluctuating u velocity used in the pattern-
recognition scheme. The basic requirement wag for the slope of the u-signal dur-
ing deceleration to be smaller than the slope during acceleration. Such patterns
were found in over 65% of the total sample in the region of high Reynolds stress
production. The unsmoothed data were subsequently normalized to an arbi-
trarily chosen unit time interval and stored. Conditionally averaged patterns of
the v signal were found to be approximately 180° out of phase with the u signal.
Their interaction produces Reynolds stress in the wall region of a bounded tur-

bulent shear-flow.

Eckelmann et al (1977) applied the above described pattern recognition
technique to signals obtained from a five-sensor probe. Their raulfs agreed with
those obtained by Wallace et al (1977). They also obtained conditional averages
of the instantaneous production term as defined by Brodkey et al (1973). The
ejection-type motion was found to give the prinéipal positive contribution to tur-

bulence production. For ¥+ <30 the sweep-type motion also contributes heavily
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to positive production. In the outer region, however, the sweep motions are nega-

tive contributors to the production process.

Blackwelder and Eckelmann (1978) studied the spanwise structure of the
bursting phenomenon. The bursts were detected at yt =15 by using the VITA
technique on the streamwise velocity component. Conditional averages with a
time delay were obtained from wall elements having a spanwise spatial separa-
tion. They concluded that the bursting phenomenon is associated with pairs of
counterrotating vortices that seem to ‘‘pump’ fluid away from the wall, thus
forming a low-speed streak. The length of these vortices was estimated to be
Azt =1000.

Blackwelder and Eckelmann (1979) studied the vortex structure associated
with the bursting phenomenon. Two wall elements were used to measure the two

components of the velocity gradient at the wall. A characteristic function was

defined as:
=100, wit)  wi) | wi(t)
uf w? u} wé

where u;, w; and u,, wy are the signals from the two wall elements. This func-
tion is a measure of the energy associated with the fluctuations. If the coherent
eddies are more energetic than the random fluctuations, their related velocity
fluctuations will have excursions farther from the origin. The four signals from
the probes define ;1 s'mgle. point in a four-dimensional space with each signal

corresponding to one axis. The 16 different quadrants in this space correspond to
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all combinations of the four signals. Blackwelder and Eckelmann applied a thres-
hold level to the function f%(¢) and by increasing it were able to show that the
percentage of the time, spent in the quadrants associated with the streamwise

vortices, increased.

Kreplin and Eckelmann (19793) measured space-time correlations of the
foom R, (Ay,7), R,(Ay,7) and of the form R, (y,; Az, Ay, 7) and
Ryo(y,; Az, Ay, 7). The two components of the velocity gradient at the wall
were obtained from heated wall elements. The two components of the velocity
u, w close to the wall were measured by a V-probe mounted on a wall plug at
gt =2.3 and Azt =-108, 0 and + 144. The same components in the fluid were
measured by a movable V-probe at Ay*=S5, 10, 20, 40 and Az*=0. From
these correlation measurements they deduced that the wall region is dominated
by pairs of inclined, counterrotating streamwise vortices. Their centres were
found at an average separation of Az* =250 and their lengths were estimated to

be Azt ~1200.

Hogenes and Hanratty (1982) carried out simultaneous measurements of the
two components of the velocity gradient at multiple points on the wall and of
the streamwise velocity at various distances from the wall. They studied the
influence of the A\* /2100 wall eddies, defined in terms of the s,(z) pattern, on the
axial velocity component. In order to identify maxima or minima and positive or
negative slopes of the s,(z) profiles, they devised detection coefficients capable of

detecting such characteristics of the spanwise variation of the s, signal. These
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coefficients were used to detect the wall events over the middle probe of the wall
probe array and to define the triggering time for the conditional averaging pro-
cess. Similar coeflicients were used to study the temporal succession of wall pat-
terns. Their results indicated that the A* ~2100 wall eddies are controlling the
fluctuations of the streamwise velocity component in the viscous wall region.
That provided further support for using the idealized eddy model of Sirkar and
Hanratty (1970a) to describe momentum transport between the wall and the fluid
and to account for the origin of the. low momentum fluid that has been observed

to emerge intermittently from the wall region.
2. Measurements of the streak spacing, A\, and the bursting period Tp

The spacing of the wall streaks in the spanwise direction, A\*, can be deter-
mined either by visually counting the streaks in a large number of pictures or by
determining the wavenumber k,* that maximizes the spanwise spectra &, (k)
of the streamwise velocity close to the wall. The spacing can also be inferred
from correlation measurements (Lee et al 1974). Kim et al (1971) found
At =100+ 20. Coantic (1967) and Bakewell and Lumley (1967) used hot wiré‘
probes and calculated A% from correlation measurements. Coantic found
At ~110-130 and Bakewell and Lumley calculated A\* ~2100. Gupta et al (1971)
used a rake of hot-wires and obtained spanwise correlations of u below y*=12.
They found A\*~295. Lee et al (1974) used electrochemical techniques to measure
the spanwise correlation of both u and w at the wall. They measured

At ~105-107. From measurements of Schraub and Kline (1965) the value of \*
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appears to be insensitive to pressure gradient.

The mean period Tp between bursts has been measured for low Reynolds

pumbers. Two methods have been used for this purpose: 1) visual counting of
the bursts and 2) the second mild maximum of the time autocorrelation of the

streamwise velocity fluctuations. Kim et al (1971) presented a plot of Tp scaled

with wall parameters versus Re, (momentum thickness Reynolds number) using

the measurements of the Stanford group (Kim et al 1971-visual and autocorrela-

tion measurements of Tp, Schraub and Kline 1965-visual measurement of F,

Runstadler et al 1963-visual measurement of F, where F is a normalized burst

rate per unit span). They also included measurements of Tp by Tu and

Willmarth (1966) and by Rao et al (1971) who used the autocorrelation method.

T
The resulting relation was ul : —0.65Re™®. When the data were replotted as

Ty : Tp Ty :
U oo—;—- versus Re, they fell on the line Uoo-}—&«’30 (or U OO-TS—NS) where 6* is

the displacement thickness and 6 the thickness of the boundary layer. Kline et al

dU
(1967) plotted F + versus K(pressure gradient parameter = ;2 d:° ). For
o0

K=0 i.e. a zero pressure gradient turbulent boundary layer, F+=120X 1075
The most reliable data appear to be from direct visual observations (Schraub and

Kline 1965, Donohue et al 1972, Smith 1978). These are confined however to Re,

_ iy
values within a factor of two of Re,=10%. The scaling law for —)-‘L has been a

subject of controversy. During the past decade it generally has been thought
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0
that —2- scales on outer variables U, and 6 but some recent measurements of

A
Blackwelder and Haritonidis (1980) covering the range 10*<Re,<10* have indi-

T
cated that —£_ scales on wall variables u, and v.

. tati et or_turbule owWS

As mentioned in the beginning of this chapter the solution of the full three-
dimensional time-dependent Navier-Stokes equations is not possible due to the
lack of computing power, even by the largest computers available today. A
review of the methods that have been used so far, in order to get around this
problem, is presented in what follows. Emphasis is given to the Large-Eddy
Simulations (LES) and the newly developed approach of modelling the viscous
wall region of a turbulent flow field. An extensive review of the Reynolds-
averaging methods has been given by W.C. Reynolds (19786).

A. Reynolds averaging

*

According to this approach. the Navier-Stokes equations are averaged in
time and the resulting Reynolds stresses have to be modelled in order to close the
problem. The various models that have been developed for this purpose are the
following:

1. Zero-equation models

These models use only the pde’s from the mean velocity field, and no tur-

bulence pde’s. They are mostly based on the eddy-viscosity and mixing length

-\ - -



37

concepts. According to these, the Reynolds stress is computed as:

aUu , aUu

10 |
Jy = dy

-W=VT ay ——12 I

and so is completely specified by mean flow pro-

perties.
2. One-equation models

These models involve one pde relating to a turbulence velocity scale, in
addition to the mean-flow pde's. The model equation for this velocity scale is

provided by the turbulent kinetic energy equation.

The difference between zero-equation and one-equation models is that in the

latter the eddy viscosity v, instead of being related directly to the mean-flow

. scales, is modelled by vy=c¢;q | where ¢ is the calculated rms turbulent kinetic

energy and [ is given byll=Ky[1—exp(—c2qy /v)] as in the zero equation models.
3. Two-equation models

These models use an additional pde related to a turbulence length scale.
Most research groups have achieved considerable success using an equation for
the isotropic dissipation D;,. The equation relating D;, to the length scale [ can
be taken to be the one proposed by Norris and Reynolds (1975) which works both

in the viscous sublayer and the fully turbulent regions. According to this equa-

3 ¢
tion D,-,=c1-qr [1 + ql/2V ] At high turbulent Reynolds numbers (¢//v) the

3
limiting relation is D,-,=c,-gl— i.e. the dissipation is independent of viscosity and

determined by the properties of the energy-containing eddies. At very low ¢l /v
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2
the limiting expression is : D;,=c,¢, V'?E“ Le. there is dissipation in the large

scales of the flow and is affected by the viscosity.
4. Stress-equation models

These models involve pde’s for all components of the Reynolds stress tensor
and in general for a length scale as well. The equations for 17,7; can be formally
written as: W+ O u_,-'uJT=P,-]-+ ¢ij—Jijii—D;i; where P;; is the “‘generation ten-
sor”, ¢;; is the pressure-strain “redistribution tensor’’, D;; is the “isotropic dissi-
pation tensor” and J;; is the transport of 17,_1;]- ( the subscript ,I denoctes
differentiation with respect to z;). The redistribution term #;; has been the sub-
ject of most controversy and experimentation. In a flow without any mean strain,

this term is responsible for the return to isotropy. However, in deforming flows

the situation is much more complicated.

There is a basic difficulty in this general approach to turbulence models.
One would like to model only terms that respond on time scales short compared
to that of the computed quantities. In general, it seems that higher order statist-
ical quantities take longer to reach steady state than lower order statistics. Any
model obtained by truncation at some statistical order would suffer from this
difficulty. What one really needs to do is truncate at some level of scale, and
thereby take advantage of the fact that the smaller scales adjust faster to local
conditions. Then, by truncating at smaller scales, one has at least hope of con-

vergence, a hope that is at best dim when one truncates at higher and higher ord-
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ers of statistical quantities that have comparable time scales. This is the idea

behind the LES approach described below.

B. Large-Eddy Simulations(LES)

The idea is to do a three-dimensional time-dependent numerical computa-
tion of the large scale turbulence. It will always be impossible to compute the

smallest scales in any real flow at high turbulence Reynolds numbers, so they
must be modelled.

The first application of LES was made by Deardorff (1870) who in fact
showed th;;t a three-dimensional calculation is feasible. The idea of applying an
averaging operator to the governing equations, with averaging typically being
over the grid volume of the calculations to filter out the subgrid scale (SGS)
motions, had been known since the early work of Reynolds (185). This
approach had'been employed by several groups of meterologists (Smagorinsky et
al 1965, Leith 1965) for the general circulation of the atmosphere. Deardorfl
actually tested this meteorological approach upon an interesting case of lab tur-
bulence: plane Poiseuille flow (channel flow) driven by a uniform pressure gra-
dient. He used 6,720 uniform grid intervals and simulated the subgrid scale
effects using a suggestion of Smagorinsky et al (1965) and Lilly (1967) which is
applicable only for large Reynolds numbers. With his pioneering work Deardorff

demonstrated the potential of LES for use in basic studies of turbulence.

The grid-scale averaging operator was defined as:
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2+ 1/282 y+1/2Ay z+1/282

1
oz, ¥, 2, t)= u(é, n, ¢ t)d&dnds
Az Ay Az 3-1{2153 y-—l{2Ay z—-l./‘;Az

A filtered variable, denoted by the overbar, is thus a continuous function of space

and time. After applying the overbar operator the Navier-Stokes equations in

flux form may be written as:

——+—a—(m -—-—a—(uu+uu + w4 u; -
0z; J 0z;

1, - 0 ,. 1 - 1
'5'5;,'”1 %) - _—(8::,- P+ Juu u)+ ﬁ;‘v u (2.1)
Here 1,2,3 correspond to z,¥,2 respectively and the prime quantities are given by:

w=u;+ u; and represent deviations from local grid-volume means. Reynolds’

averaging assumption

- T - — — -rr
Yy = U U; +uu +uu + gy, =y U+ %Y

can be used (otherwise it may be incorporated into later assumptions). If this

assumption is used then the remaining as unknowns in (2.1) are the SGS Rey-

nolds stresses u; u; — 5 ;u 4 . The method of evaluation used introduced SGS

eddy coefficients as follows:

o v, - =0 =-K(—+ )
il gpEt dz; dz;

where K was modelled according to Smagorinsky’s et al (1965) assumption:

0y; du; i/
K(z,y,2,t)= (cA)z{ 25, +-5;’_"]] (2:2)

where ¢ is a dimensionless constant and A-(Az-Ay-Az)‘/:’. If an inertial

subrange exists on scales which encompass the grid interval, then the usual
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dimensional arguments demand that

K=c"%Rp48 (2.3)
where €is the rate of dissipation within a local grid volume. But for homogeneous
turbulence
u; (95 . du;
aij laZJ 6:::,-
Elimination of € between (2.3) and (2.4) gives (2.2). Lilly (1967) showed that if

=K (2.4)
¢~0.17 then (2.2), (2.3) and (2.4) are compatible with the known value of
Kolmogorov's universal constant for the inertial subrange. However, Deardorff
found this value to be too large, causing motions to damp until excessively large
mean shear built up. He, therefore, used the value ¢=0.10 which seemed to be an

optimum one.

The most distinguishing result of Deardorfl’s calculations was the discovery
that the # eddies are more elongated in the downstream direction than the ¥ or

¥ eddies. The pressure eddies showed no indication of downstream elongation or

tilt.

Leonard (1973) studied the energy cascade in large-eddy simulations of tur-
bulent flows. He defined n;;=u; u; + wu; + u;u; and 7; = —(n;; - %ﬂkkts,-j).
So now (2.1) becomes:

.?___'7'.-.*. L(m=_._a__rp+ Lﬂ )+ 21'1.4_ _l_v2r
at oz; " ' ! Oz, gok 0z; Re ¥ '

One can now approximate ¥; ¥;~u; u; (Lilly , 1967) or lump the difference into

the definition of n; and model 7; by an eddy viscosity hypothesis:
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7;;=K(——+ ——) where K is the same as Deardorfl’s (1870). Leonard studied
J 32:1- 32,-

the implications of the assumption u; w;=u; u;. If u, is constant over an
averaging volume then one has to deal with a component u,: which is effectively
larger than that obtained when u, is defined as a moving average over the grid
volume. In the former case the modelling of the subgrid terms is clearly more
critical. Leonard showed that appropriate handling of the term 6(@ /0z; can
provide a significant portion of the large-scale dissipation besides the Reynolds
stresses of the subgrid scale turbulence. He showed under certain assumptions
that the dissipation rate due to B(W/azi, €ps, has a lower bound of
€ps=>0.3¢x+ 0.1¢ where € is the total dissipation rate. The remainder of the losses

must be taken up by the SGS term 97;; /621-. He concluded that the variations of

du; .Tj/az,- within an averaging volume should be explicitly accounted for.

Schumann (1975) developed subgrid scale models for finite difference simu-
lations of turbulent flows in plane channels and annuli. His finite difference equa-
tions were based on integral conservation equations for each grid volume. As a
consequence the SGS stresses were defined as surface mean rather than grid
volume mean values of the fluctuating velocity products. Schumann split the
SGS stresses into two parts: one accounting for locally isotropic turbulence and

the other for inhomogeneous effects. He wrote:

e = Dy - < Dy >) - i< By >+ Sogtaar

where /~means the average of any quantity over the surface whose unit normal

, ‘ . _
A | |
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is in the j— direction. D;; is the finite-difference analog of the strain tensor D;;,
iy and ' p* are eddy viscosities and the brackets < > denote the time mean
value. The locally isotropic part is set proportional to the fluctuating part of the
strain tensor in order to get zero time mean values of the SGS stresses for §5£;.
The channel turbulence is inhomogeneous due to the nonzero components of the
time mean strain. This is reflected by the inhomogeneous part of the above
assumption. Schumann also developed a SGS kinetic energy transport equation
which provided the velocity scale in his modelling of . He accounted for the
anisotropy of the finite-difference scheme, used larger values for the periodicity
lengths (z and z directions) and higher grid resolution (up to 65,536 grid
volumes). His results for the mean velocity profile and the turbulent intensities

were in better agreement with measurements by Laufer (1950) and Comte-Bellot

(1965) than the previous calculations of Deardorff (1970).

Deardorff (1970) and Schumann (1975) were able to predict some of the
features of turbulent channel flow with a fair amount of success. However, nei-
ther work treated the most important part of the flow, namely the region very
near the wall. It is in this region that virtually all the turbulent energy produc-
tion occurs. Both Deardorff and Schumann introduced artificial boundary condi-
tions at some distance from the wall and, thus, effectively modelled the tur-

bulence production mechanism in this region.

It was not until the joined efforts of Stanford University and the NASA

Ames Research Center that the wall region was given its full credit in the LES
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calculations of bounded turbulent shear flows. The availability of large and
effective computing power (CDC 7600, Illiac IV) was very important for these cal-

culations.

Moin et al (1978) calculated the three-dimensional time-dependent tur-
bulence in a channel using the CDC 7600 computer and 16X 16X 65 grid points.
They employed arguments similar to Deardorfl’s (1970) for the modelling of the
SGS Reynolds stresses. Their numerical scheme was a semi-implicit scheme that
treats part of the diffusion terms and pressure implicitly, and the remaining
terms explicitly. The time advancing uses the Adams-Bashforth method for the
explicit terms and the Crank-Nicolson method for the implicit terms. The
lengths of the computational box in the streamwise and spanwise directions were
selected to include the important large scale eddies. For this purpose the meas-
urements of Comte-Bellot (1963) were used. Due to storage limitations the mesh
sizes were selected as: Azt =251 and Az*=168 which was inadequate for
resolving the scales close to the wall, particularly in the spanwise direction. The
initial conditions were provided from the governing equations of small distur-
bances used in hydrodynamic stability theory to obtain a velocity field with nega-
tive Reynolds stress. The value for ¢ in equation (2.2) that they selected for the
final calculations was ¢=0.2. The numerical results of Moin et al showed reason-
able agreement with measurements. For the resolvable portion of the streamwise
and spanwise intensities the agreement was good but it was only fair for the

intensity of the normal velocity fluctuations. It was found that, especially in the
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vicinity of the walls, a large fraction of the vertical turbulent intensity lies in the
subgrid scale motions. The mean velocity profile agreed with measurements by
Comte-Bellot (1963). A quantity of interest to turbulence modellers is the
pressure-velocity gradient interaction. Moin et al’s computations showed that
over most of the channel the streamwise component of resolvable turbulence
intensity transfers energy to the other components. In the vicinity of the wall
(y* <30) there is a large transfer of energy from the vertical component of tur-

bulence intensity to the spanwise component.

Kim and Moin (1979) carried out a three-dimensional time-dependent cal-
culation of turbulent flow in a channel using the ILLIAC IV computer and
64X 64X 64 grid points. Their modelling of the eddy viscosity was similar to
Moin et al's (1978). They used a semi-implicit finite difference scheme with
implicit time advancement for all the viscous terms. The size of their computa-
tional box was the same as in Moin et al (1978) but because of the larger number
of grid points the resolution in the streamwise and spanwise directions was
better: Azt =63, Azt =42. Kim and Moin devised numerical tricks in order to
efficiently manage the flow of data between the core memory and the disk
memory where the entire data base resided. Due to core size limitations they had
to develop a special algorithm for the solution of the block tridiagonal matrices
resulting from the finite-difference formulation. The numerical results of Kim
and Moin revealed most of the structure observed experimentally. They found

the wall layer to consist of coherent structures of low-speed and high-speed
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streaks alternating in the spanwise direction. Hot-spots, small localized regions of
very large values of turbulent shear stress #¥ were frequently observed. No evi-
dence of a direct relationship between streaks and streamwise vorticity w, was

observed. Very close to the wall w, was not the result of large-scale revolving

fluid motions but was rather due to the spanwise velocity gradient %’:— Though

strong vortical regions were observed away from the wall (y*~30) ((?)-f-)l/2
attained its maximum value at the wall. Their profiles for the pressure-velocity
gradient interaction showed the same effect as calculated by Moin et al (1978);
namely, a significant tranfer of energy from the normal to the spanwise com-
ponent of turbulent kinetic energy in the immediate neighborhood of the wall

(“‘splatting’’ effect).

Moin and Kim (1981) simulated fully developed turbulent flow in a channel
using the ILLIAC IV computer and up to 516,096 grid points. They employed
Schumann’s (1975) modelling of the eddy viscosity but had to choose a value for
vy (anisotropic eddy viscosity) from numerical experiments. They showed that
the so called Leonard stress-term X;,-:Wt? 171— can be quite significant, hence
including it with 7;; is not recommended. Their agreement of the computed
mean velocity profile and turbulence statistics with experimental data was good.
The regions of large-amplitude streamwise vorticity w, were found to be concen-
trated near the wall. Slightly above the wall, these regions contained revolving

fluid elements induced by strong shear layers in the cross-stream plane. In the

immediate neighborhood of the wall the “splatting” effect led to large magnitudes

- = s A o N aw W
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of w, and instigated transfer of energy from the normal to the spanwise com-

- ponent of turbulence.

C. Simple eddy modelling of the viscous wall region

This newly developed approach focuses in the viscous wall region of a tur-
bulent shear flow. The flow field is assumed to be homogeneous in the stream-
wise direction and the time-dependent Navier-Stokes equations are solved on a

plane perpendicular to the mean flow.

Hatziavramidis (1978) was the first one to explore such a non-linear model
of the A\* =100 wall eddies. He visualized the flow to be coherent for 0<y* <40
and well mixed for y*>40. The boundary conditions, that were used at

y,} =40, specified the fluctuating spanwise component of the velocity (w), zero
stress (g—w-:O) and zero intensity for the streamwise component of the velocity
y

(u'=0). The period of the spanwise velocity fluctuations at y,5 =40 was taken to

be T*=100.

The computed streamline patterns showed the flow field to alternate
between strong convective motions (outflows and inflows) and periods of relative
quiescence (streamwise vortices associated with low w- and v- velocities). The
most interesting finding of the calculations was that the flow on the y-z plane
can create streamwise velocity fluctuations whose magnitude agrees with experi-
mental measurements especially in the region 0<y<20. The calculated mean

streamwise velocity profile also agreed with measurements throughout the viscous
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wall region. The intensities of the velocity fluctuations on the y-z plane showed
fair agreement with experiments. The calculated (v)* intensity attained higher
values in the region 20<y* <40 and the (w')* intensity exhibited lower values

in the region 15<y* <35.

These calculations showed for the first time, that by using simple boﬁndary
conditions at y,t =40 one can compute most of the important features of the
viscous wall region i.e. momentum transport to and from the wall by the spatial
and temporal coupling of inflows and outflows and creation of high intensity velo-

city fluctuations in the streamwise direction.

Chapman and Kuhn (1981) followed up the work of Hatziavramidis by
using more realistic boundary conditions at y,* =40. The visualized the flow in
the viscous wall region to result from the interaction of the A\* =100 eddies with
eddies that are associated with a “‘pulsating” type of flow at y,¥ =40, on a plane
parallel to the wall. Their calculated Reynolds stress and intensity profiles
showed better agreement with experiments than the computations of Hatziav-
ramidis, especially in the region 20<y* <40. The calculations of Chapman and
Kuhn introduced for the first time the effect of outer flow eddies on the computed
wall layer dynamics. However, the modelling of these eddies and the selection of
the various model parameters are open to question and need to be improved with

the help of more detailed experimental measurements in the viscous wall region.
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CHAPTER 3

EXPERIMENTAL METHODS

The experimental results analyzed in this work were obtained by Lau
(1980) in a 20 cm flow loop built by Sirkar (1969). Details about its construction

and operation can be found in theses by Hogenes (1979) and Lau (1980).

Tixe test section was made from an acrylic pipe, with an internal diameter
of 20 cm and a length of 2 m. The fluid probe sensors were manufactured by
TSI, Inc. Each pair was separated by a distance of 1 mm and was constructed
from elements with a length of 1 mm and a diameter of 0.05 mm. Forty pairs of
multiple V-shaped wall electrodes were aligned perpendicular to the mean flow
direction. Only nine pairs were used in this work. Single V-shaped probes were

located at various positions in the streamwise direction. A drawing of the test

section and a schematic diagram of the arrangement of the measuring sensors can

be found in Lau .( 1980).

All outputs from the electrode circuit were adjusted to have values between
4 5 volts. This was necessary because all analog signals were digitalized by an
A/D converter having a resolution of only 16 bits. The A/D converter was con-
trolled by an IBM i800 computer. Before digitalization, the signals were filtered
by a fourth ordt;r low pass Buttersworth ﬁlt'er with a cut-off frequency of 15 Hz,

which corresponds to a dimensionless frequency of n*=1. The sampling fre-
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quency was 20 Hz and the sampling time 400 seconds. The data were stored in
integer form in magnetic discs. Each disc has a capacity of approximately
400,000 words. These raw data were then transferred to magnetic tapes and

analyzed in a CDC Cyber computer.

Both the wall and fluid probes were electrodes operated under conditions
that the current flowing in the circuit is directly proportional to the rate of mass
transfer to the electrodes. The electrolyte used in the experiments was a solution
of iodine in potassium iodide with a concentration of 0.1 M KI and 0.001 M I,.
Details regarding these techniques can be found in theses by Lee (1975) and

Hogenes (1979).

The mass-transfer rates to the wall were relited to s, and s, through
analytica<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>